

jsk_robot

jsk_robot is a stack for the packages which are used in JSK lab.

The code is open source, and available on github [http://github.com/jsk-ros-pkg/jsk_robot].

This repository contains following ros packages:

	jsk_pr2_robot

jsk_pr2_robot

Teleoperation

For the JSK safe teleop system, please see [data flow diagram of safe_teleop.launch](https://github.com/jsk-ros-pkg/jsk_robot/tree/master/jsk_robot_common/jsk_robot_startup#launchsafe_teleoplaunch)

![teleop_command](images/pr2_teleop_command.png)

Setup for Development Users
`
mkdir -p catkin_ws/my_first_demo
cd catkin_ws/my_first_demo
wstool init src
wstool set jsk_demos https://github.com/jsk-ros-pkg/jsk_demos -t src --git
wstool update -t src
source ~applications/ros/hydro/devel/setup.bash
catkin b
`

Setup for Application Users (for administrator only)

use [jsk_pr2.rosinstall](https://github.com/jsk-ros-pkg/jsk_robot/blob/master/jsk_pr2_robot/jsk_pr2_startup/jsk_pr2.rosinstall) to install software
`
mkdir -p ros/hydro/src
cd ros/hydro
wstool init src
git clone https://github.com/jsk-ros-pkg/jsk_robot.git src/jsk-ros-pkg/jsk_robot
wget -O src/.rosinstall https://raw.githubusercontent.com/jsk-ros-pkg/jsk_robot/master/jsk_pr2_robot/jsk_pr2_startup/jsk_pr2.rosinstall
wstool update -t src
rosdep install --from-paths src --ignore-src -r -y
catkin b
`

Index

 # jsk_robot

[![Build Status](https://travis-ci.com/jsk-ros-pkg/jsk_robot.svg)](https://travis-ci.com/jsk-ros-pkg/jsk_robot)

Deb Build Status

[//]: # (!!DO NOT EDIT !!)

[//]: # (THIS SECTION IS AUTOMATICALLY GENERATED BY)

[//]: # (rosrun jsk_tools generate_deb_status_table.py jsk_robot)

Package | Kinetic (Xenial) | Melodic (Bionic) |

:------------------	:———–	:---
jsk_robot (arm64)	[![Build Status](http://build.ros.org/job/Kbin_uxv8_uXv8__jsk_robot__ubuntu_xenial_arm64__binary/badge/icon)](http://build.ros.org/job/Kbin_uxv8_uXv8__jsk_robot__ubuntu_xenial_arm64__binary)	[![Build Status](http://build.ros.org/job/Mbin_ubv8_uBv8__jsk_robot__ubuntu_bionic_arm64__binary/badge/icon)](http://build.ros.org/job/Mbin_ubv8_uBv8__jsk_robot__ubuntu_bionic_arm64__binary)
jsk_robot (armhf)	[![Build Status](http://build.ros.org/job/Kbin_uxhf_uXhf__jsk_robot__ubuntu_xenial_armhf__binary/badge/icon)](http://build.ros.org/job/Kbin_uxhf_uXhf__jsk_robot__ubuntu_xenial_armhf__binary)	[![Build Status](http://build.ros.org/job/Mbin_ubhf_uBhf__jsk_robot__ubuntu_bionic_armhf__binary/badge/icon)](http://build.ros.org/job/Mbin_ubhf_uBhf__jsk_robot__ubuntu_bionic_armhf__binary)
jsk_robot (i386)	[![Build Status](http://build.ros.org/job/Kbin_uX32__jsk_robot__ubuntu_xenial_i386__binary/badge/icon)](http://build.ros.org/job/Kbin_uX32__jsk_robot__ubuntu_xenial_i386__binary)	—
jsk_robot (amd64)	[![Build Status](http://build.ros.org/job/Kbin_uX64__jsk_robot__ubuntu_xenial_amd64__binary/badge/icon)](http://build.ros.org/job/Kbin_uX64__jsk_robot__ubuntu_xenial_amd64__binary)	[![Build Status](http://build.ros.org/job/Mbin_uB64__jsk_robot__ubuntu_bionic_amd64__binary/badge/icon)](http://build.ros.org/job/Mbin_uB64__jsk_robot__ubuntu_bionic_amd64__binary)

[//]: #

 # jsk_naoqi_robot

JSK original ROS package for NAO and Pepper.
The package name comes from Naoqi OS they use.

How to start up ROS nodes for a naoqi robot?

Your PC becomes ROS master. Your PC connects to a naoqi robot and starts up ROS nodes (jsk_nao_startup.launch and jsk_pepper_startup.launch).
You can control NAO and Pepper via roseus (naoeus and peppereus).
For more information about these programs, please refer to [here for NAO](https://github.com/jsk-ros-pkg/jsk_robot/tree/master/jsk_naoqi_robot#nao) and [here for Pepper](https://github.com/jsk-ros-pkg/jsk_robot/tree/master/jsk_naoqi_robot#pepper).

How to turn on/off a naoqi robot?

	On

Please refer to [NAO’s page](http://doc.aldebaran.com/2-1/nao/nao-turn-on.html) and [Pepper’s page](http://doc.aldebaran.com/2-4/family/pepper_user_guide/turn_on_pep.html).

	Off

Please refer to [NAO’s page](http://doc.aldebaran.com/2-1/nao/nao-turn-off.html) and [Pepper’s page](http://doc.aldebaran.com/2-4/family/pepper_user_guide/turn_off_pep.html).

	Disable AutonomousLife

Naoqi robot has [AutonomousLife](http://doc.aldebaran.com/2-4/family/pepper_user_guide/life_pep.html) in addition to a normal concept of servo on and off.

When you’re a developer, you’ll want to disable AutonomousLife (it includes servo off) and servo on a robot to try codes you write.

If you want to know how to disable it, please refer to [using a chest button](http://doc.aldebaran.com/2-4/family/pepper_user_guide/freeze_pep.html). Link is for Pepper, but same as NAO.

Or please refer to [using ROS service](doc/disable_autonomous_life_from_ros_service.md).

How to connect your PC and a robot to a same network?

	Network with DHCP

To connect NAO and Pepper to wifi for the first time, please refer to [here](doc/connect_to_wifi.md).

	Network without DHCP (link-local addressing)

Please refer to [here](http://doc.aldebaran.com/2-1/nao/connectivity.html#local-link-an-alternative-to-dhcp).

[2019.03.01: Trouble shooting]

When you connect Pepper and your PC via network without DHCP, power on Pepper and launch Setting from Pepper’s tablet, setting wizard sometimes becomes zombie process. You may not exit Setting as described [here](https://github.com/jsk-ros-pkg/jsk_robot/blob/master/jsk_naoqi_robot/doc/connect_to_wifi.md#pepper-only-how-to-access-to-a-robot-web-page-via-peppers-tablet), which causes a failure of AutonomousLife setting.

`
[ERROR] [1550641271.575637]: Exception while disabling life state: ALAutonomousLife::setState AutonomousLife::setState Calls to the setState method are not currently allowed. Did you finish the getting started wizard?
`

If this happens, please connect Pepper to network with DHCP and exit Setting.

Setup Environment

% First, you need to install ros.
For ros kinetic, please refer to install guide like [here](http://wiki.ros.org/kinetic/Installation).
For ros melodic, please refer to install guide like [here](http://wiki.ros.org/melodic/Installation).

% As mentioned in https://github.com/ros-naoqi/naoqi_driver#launch, naoqi_driver for ROS melodic and greater have to be used for robots running NAOqi 2.9 and greater. Using ROS melodic on Pepper running NAOqi OS 2.5 has some known issue like this: https://github.com/ros-naoqi/naoqi_driver/issues/96

1. Install Python NAOqi SDK
You can download it (version = 2.5.5) from [here](https://drive.google.com/file/d/1xHuYREDa78xGiikEpsjxfZQ7Gfvo1E9D/view?usp=sharing).
Please unzip the downloaded file.
Please create pynaoqi folder in your home directory.
Then put the file under your pynaoqi folder.

% You can download other version SDKs from [here](https://www.softbankrobotics.com/emea/en/support/nao-6/downloads-softwares/former-versions?os=49&category=39). Please change the tab to SDKs. Version < 2.5.5 may cause error.

	Export environment variables in your .bashrc


```
# Please use Python NAOqi SDK version >= 2.5.5 (https://github.com/jsk-ros-pkg/jsk_robot/issues/1099)
export PYTHONPATH=$HOME/pynaoqi/pynaoqi-python2.7-2.5.5.5-linux64/lib/python2.7/site-packages:$PYTHONPATH

export NAO_IP=”olive.jsk.imi.i.u-tokyo.ac.jp” % OR IP address like “133.11.216.xxx”
export ROS_IP=”133.11.216.yyy” % OR run rossetip command to set ROS_IP
```
% pose_controller.py in naoqi_pose package imports NaoqiNode from naoqi_node.py in naoqi_driver_py package.

% naoqi_node.py imports ALProxy from naoqi.py.

% naoqi.py is located under pynaoqi-python2.7-2.5.5.5-linux64/lib/python2.7/site-packages/

% NAO_IP is IP address of Pepper. Pepper tells you their address when pushing their belly button.

% Please install `ros-${ROS_DISTRO}-jsk-tools` to use `rossetip` command.

	Install ROS packages for NAO and Pepper

`
mkdir -p catkin_ws/src
cd catkin_ws
wstool init src
wstool merge -t src https://raw.githubusercontent.com/jsk-ros-pkg/jsk_robot/master/jsk_naoqi_robot/naoqi.rosinstall
wstool update -t src
source /opt/ros/${ROS_DISTRO}/setup.bash
rosdep install -y -r --from-paths src --ignore-src
`

Then, please install Nao/ Pepper mesh files from deb with manual approval of license.

`
sudo apt-get install ros-${ROS_DISTRO}-pepper-meshes
sudo apt-get install ros-${ROS_DISTRO}-nao-meshes
`

Note that naoqi.rosinstall includes necessary patches for ROS kinetic, such as [naoqi_dashboard (kochigami-develop)](https://github.com/kochigami/naoqi_dashboard/tree/kochigami-develop).

Finally, please compile them.

`
catkin build peppereus
catkin build jsk_pepper_startup
catkin build naoeus
catkin build jsk_nao_startup
source devel/setup.bash
`

% Inside jsk_robot package, there are many packages which are not required for jsk_naoqi_robot. If we fail to compile them, building process might stop and jsk_naoqi_robot packages might not be compiled. We might need to continue compiling (catkin build –continue-on-failure) in that case.

	(optional) For NAO and Pepper developers

Confirm that you get the following output when you type wstool info

% UID of jsk_robot may change from below, but there is no problem. That is because this package is in active developpment.

```
$ cd ~/catkin_ws/src
$ wstool info
workspace: /home/leus/catkin_ws/src


Localname         S SCM Version (Spec)    UID  (Spec)  URI  (Spec) [http(s)://…]
———         - — ————–    ———–  —————————
pepper_robot        git master  (-)       efad3979b374 github.com/ros-naoqi/pepper_robot
naoqi_driver        git kochigami-develop 98c0b678286a github.com/kochigami/naoqi_driver
naoqi_dashboard     git kochigami-develop 7f32005e08e0 github.com/kochigami/naoqi_dashboard
naoqi_bridge_msgs   git kochigami-develop d7417613690e github.com/kochigami/naoqi_bridge_msgs
naoqi_bridge        git kochigami-develop c28b727e1e9b github.com/kochigami/naoqi_bridge
nao_robot           git master  (-)       67476469a137 github.com/ros-naoqi/nao_robot
nao_interaction     git master  (-)       f97ad12f3896 github.com/ros-naoqi/nao_interaction
jsk_robot           git master            d551865511c3 github.com/jsk-ros-pkg/jsk_robot.git




```

Interface when controlling NAO and Pepper via roseus

Common methods for NAO and Pepper are defined in naoqieus/naoqi-interface.l. NAO-specific methods are defined in naoeus/nao-interface.l. Pepper-specific methods are defined in peppereus/pepper-interface.l. For further details about each method, please refer to [_naoqieus_](naoqieus/README.md), [_naoeus_](naoeus/README.md), and [_peppereus_](peppereus/README.md) respectively.
For some methods, they require specific branch (kochigami-develop) because they are not merged into master. [naoqi.rosinstall](https://raw.githubusercontent.com/jsk-ros-pkg/jsk_robot/master/jsk_naoqi_robot/naoqi.rosinstall) file includes this branch for naoqi_driver, naoqi_bridge and naoqi_bridge_msgs repositories.

NAO & Pepper

	[_naoqieus_](naoqieus/README.md)
	
	common interface package for controlling NAO and Pepper via roseus

To connect NAO and Pepper to wifi, please refer to [here](doc/connect_to_wifi.md).

To control multiple robots in one PC, please refer to [here](doc/control_multiple_robots_in_one_pc.md).

To control NAO and Pepper via gazebo simulator and roseus, please refer to [here](doc/simulator.md).

NAO

	[_jsk_nao_startup_](jsk_nao_startup/README.md)
	
	contains ROS launch files for NAO

	[_naoeus_](naoeus/README.md)
	
	package for controlling NAO via roseus

Pepper

	[_jsk_pepper_startup_](jsk_pepper_startup/README.md)
	
	contains ROS launch files for Pepper

	[_peppereus_](peppereus/README.md)
	
	package for controlling Pepper via roseus

	[_jsk_201504_miraikan_](jsk_201504_miraikan/README.md)
	
	demo package which Pepper introduces themselves

Troubleshooting

	[Pepper Only] If you use Ubuntu 18.04, it is possible that you can’t run jsk_pepper_startup.launch as reported in [this issue](https://github.com/jsk-ros-pkg/jsk_robot/issues/1474#issuecomment-1110768907). In that case, you may need to set audio false in ~/catkin_ws/src/naoqi_driver/share/boot_config.json. Note that this means you can’t subscribe audio topic.

```
“audio”:
{


“enabled”       : false






	If you have the error about naoqi_dashboard, the following methods will probably work.

Install goobject
`
$ sudo apt install python-gobject-2
`



	If you connect to the robot using LAN cable, you need to set argument network_interface when launch jsk_pepper_startup.launch

`
$ roslaunch jsk_pepper_startup jsk_pepper_startup.launch network_interface:=enp0s31f6
`



	If the getting started wizard appears on Pepper’s tablet, please try following methods.

ssh nao@<Pepper’s IP> and

`
$ qicli call ALBehaviorManager.isBehaviorRunning boot-config
$ qicli call ALBehaviorManager.stopBehavior boot-config
`







            

          

      

      

    

  

    
      
          
            
  # jsk_pr2_startup

## setup

###. rewrite /etc/ros/robot.launch

Please rewrite /etc/ros/robot.launch like following:
```xml
<launch>

<!– Robot Description –> <param name=”robot_description” textfile=”/etc/ros/groovy/urdf/robot.xml” />

<!– Robot Analyzer –> <rosparam command=”load” file=”$(find pr2_bringup)/config/pr2_analyzers.yaml” ns=”diag_agg” />

<!– Robot bringup –>
<include file=”$(find jsk_pr2_startup)/pr2_bringup.launch” />
<!– <group> –>
<!– <remap from=”/joy” to=”/joy_org”/> –>
<!– <include file=”$(find pr2_bringup)/pr2.launch” /> –>
<!– </group> –>

<!– Web ui –> <!– include file=”$(find webui)/webui.launch” /> –>

	<!– Android app –> <include file=”$(find local_app_manager)/app_manager.launch” >
	<arg name=”ROBOT_NAME” value=”pr1012” />
<arg name=”ROBOT_TYPE” value=”pr2” />

</include>

<!– RobotWebTools –> <include file=”$(find rwt_image_view)/launch/rwt_image_view.launch”/>

<!– kinect –>
<include file=”$(find jsk_pr2_startup)/jsk_pr2_sensors/kinect_head.launch”>

<arg name=”respawn” value=”false” />

</include>
<rosparam file=”/etc/ros/robot.yaml”/>

</launch>

```

### launch mongodb for multiple users

Different users in same unix group can’t run mongod against single db owned by that group.
This is because mongod opens database files using the O_NOATIME flag to the open system call.
Open with O_NOATIME only works if the UID completelly matchs or the caller is priviledged (CAP_FOWNER) for security reasons.
So if you want to launch mongodb with shared database resouces, it’s better to use POSIX Capabilities in Linux.

`bash
# In Ubuntu
$ sudo aptitude install libcap2-bin
$ sudo setcap cap_fowner+ep /usr/bin/mongod
`

### Hark with Microcone

#### documentation
- Hark installation: http://www.hark.jp/wiki.cgi?page=HARK+Installation+Instructions
- hark jsk installation: https://github.com/jsk-ros-pkg/jsk_3rdparty/blob/master/hark_jsk_plugins/INSTALL
- Microcone: http://www.hark.jp/wiki.cgi?page=SupportedHardware#p10

### Bind rfcomm device

By binding rfcomm device, we can connect bluetooth device via device file (e.g. /dev/rfcomm1). For example, rosserial with [this PR](https://github.com/ros-drivers/rosserial/pull/569) can be used over bluetooth connection.

For detail, please see https://github.com/jsk-ros-pkg/jsk_robot/blob/master/jsk_robot_common/jsk_robot_startup/README.md#launchrfcomm_bindlaunch

#### usage

Save the bluetooth device MAC address to file like /var/lib/robot/rfcomm_devices.yaml in PR2.

```
- name: device1

address: XX:XX:XX:XX:XX:XX

	name: device2
address: YY:YY:YY:YY:YY:YY


```

Then, bind rfcomm devices.

`
# login as root user in pr2
ssh pr2
su
# Assume the bluetooth dongle is plugged into c2
roslaunch jsk_pr2_startup pr2_rfcomm_bind.launch machine:=c2
`

To check how many devices are bound to rfcomm, use rfcomm command.
`
ssh pr2
ssh c2
rfcomm
`

#### management

Currently in PR2, pr2_rfcomm_bind.launch is started automatically by upstart.

The upstart config file is in /etc/upstart/jsk-rfcomm-bind.conf in PR2.



            

          

      

      

    

  

    
      
          
            
  jsk_robot_startup
===

## lifelog

see [lifelog/README.md](lifelog/README.md)

## scripts/email_topic.py

This node sends email based on received rostopic (jsk_robot_startup/Email).
Default values can be set by using ~email_info
There is [a client library](./euslisp/email-topic-client.l) and [sample program](./euslisp/sample-email-topic-client.l).
If you want to see a demo. Please [configure a smtp server](https://github.com/jsk-ros-pkg/jsk_robot/tree/master/jsk_robot_common/jsk_robot_startup#configuring-a-smtp-server-with-gmail) and setup your email_info yaml at /var/lib/robot/email_info.yaml and run.

`bash
roslaunch jsk_robot_startup sample_email_topic.launch receiver_address:=<a mail address to send a mail to>
`

### Parameters


	~email_info (type: String, default: /var/lib/robot/email_info.yaml)




Default values of email configuration. Example of a yaml file is below.

```yaml
subject: hello
body: world
sender_address: hoge@test.com
receiver_address: fuga@test.com
smtp_server: test.com
smtp_port: 25
attached_files:

	/home/user/Pictures/test.png


```

### Subscriber


	email (type: jsk_robot_startup/Email)




Subscriber of email command.

## scripts/ConstantHeightFramePublisher.py
![pointcloud_to_scan_base_tf_squat.png](images/pointcloud_to_scan_base_tf_squat.png)
![pointcloud_to_scan_base_tf_stand.png](images/pointcloud_to_scan_base_tf_stand.png)

This script provides a constant height frame from the ground to get a imagenary laser scan for pointcloud_to_laserscan package.
Biped robots need to use this constant frame to get constant laser scan for 2D SLAM package for wheeled ones like gmapping,
because the pose of biped robots including height of the base link changes during a task in contrast to wheeled ones.
In this frame, x, y and yaw is same as base frame of the robot body, z is constant and roll and pitch is same as the ground.

### Parameters


	~parent_frame (String, default: “BODY”)

This parameter indicates the parent frame of the constant height frame, which is expected to be a base frame of the robot body.



	~odom_frame (String, default: “odom”)

This parameter indicates the odometry frame on the ground.



	~frame_name (String, default: “pointcloud_to_scan_base”)

This parameter indicates the name of the constant frame.



	~rate (Double, default: 10.0)

This parameter indicates publish rate [Hz] of the constant frame.



	~height (Double, default: 1.0)

This parameter indicates initial height [m] of the constant frame.





### Subscribing Topics


	~height (std_msgs/Float64)

This topic modifies height [m] of the constant frame.





## util/initialpose_publisher.l

This script sets initial pose with relative pose from specified TF frame by publishing /initialpose.

### Parameters


	~transform_base (String, default: “map”)

TF frame of publishing topic /initialpose.



	~transform_frame (String, default: “eng2/7f/73B2”)

Base TF frame to calcurate relative initial pose



	~initial_pose_x (Double, default: 0.0)

Relative pose x



	~initial_pose_y (Double, default: 0.0)

Relative pose y



	~initial_pose_yaw (Double, default: 0.0)

Relative pose yaw





### Subscribing Topics


	/amcl_pose (geometry_msgs/PoseWithcovariancestamped)




## util/mux_selector.py

This node check and select mux input topic on condition of the specified topic.
This node takes three arguments for one topic.
The first one is the topic to be monitored.
When a message from this topic is received, it is assigned as a variable m.
If a condition specified as the second argument,
this node calls a service to select the topic specified as the third argument.

### Usage

`
rosrun jsk_robot_startup mux_selector.py /joy1 'm.buttons[9]==1' /cmd_vel1 /joy2 'm.buttons[9]==1' /cmd_vel2
`

### Parameters


	~patient (Double, default: 0.5)

Indicates the allowable range of the difference between the received topic time and the current time.



	~frequency (Double, default: 20.0)

Frequency of processing loop.



	~default_select (String, default: None)

Default topic name.



	~wait (Bool, default: False)

If wait is True, this node waits for the topic to be received.





### Subscribing Topics

The topic specified in the argument is subscribed.

## scripts/check_room_light.py

This node publish the luminance calculated from input image and room light status.

### Subscribing Topics


	~input (sensor_msgs/Image or sensor_msgs/CompressedImage)

Input topic image





### Publishing Topics


	~output (jsk_robot_startup/RoomLight)

Room light status and room luminance





### Parameters


	~luminance_threshold (Float, default: 50)

Luminance threshold to deteremine whether room light is on or off



	~image_transport (String, default: raw)

Image transport hint.





## scripts/shutdown.py

This node shuts down or reboots the robot itself according to the rostopic. Note that this node needs to be run with sudo privileges.

### Subscribing Topics


	shutdown (std_msgs/Empty)

Input topic that trigger shutdown.

If ~input_condition is set, evaluated ~input_condition is True and this node received this topic, shutdown will be executed.

If you want to force a shutdown in any case, set ~input_condition to None and send shutdown topic.



	reboot (std_msgs/Empty)

Input topic that trigger reboot



	~input (AnyMsg)

Input ros message for ~input_condition.





### Parameters


	~shutdown_command (String, default: “/sbin/shutdown -h now”)

Command to shutdown the system. You can specify the shutdown command according to your system.



	~reboot_command (String, default: “/sbin/shutdown -r now”)

Command to reboot the system. You can specify the reboot command according to your system.



	~input_condition (String, default: None)

Specify condition to run ~shutdown_command even if shutdown topic is received. Use a Python expression that returns a bool value.
In addition to a Python builtin functions, you can use topic (the topic of the message), m (the message) and t (time of message).

For example, ~input topic is std_msgs/String and if you want to check whether a sentence is a hello, you can do the following.

`
input_condition: m.data == 'hello'
`

If you want to check the frame id of the header, you can do the following.

`
input1_condition: m.header.frame_id in ['base', 'base_link']
`

For example, to prevent shutdown while the real Fetch is charging, write as follows.

`
input_condition: 'm.is_charging is False'
`

In this case, the ~input is the /battery_state (power_msgs/BatteryState) topic.
power_msgs/BatteryState has the following values and is_charging is True if charging, False otherwise.

`
$ rosmsg show power_msgs/BatteryState
string name
float32 charge_level
bool is_charging
duration remaining_time
float32 total_capacity
float32 current_capacity
float32 battery_voltage
float32 supply_voltage
float32 charger_voltage
`

Note that, use escape sequence when using the following symbols <(&lt;), >(&gt;), &(&amp;), '(&apos;) and "(&quot;).





### Usage

`
# Launch node
$ su [sudo user] -c ". [setup.bash]; rosrun jsk_robot_startup shutdown.py"
# To shutdown robot
rostopic pub /shutdown std_msgs/Empty
# To restart robot
rostopic pub /reboot std_msgs/Empty
`

## scripts/smach_to_mail.py

This node sends smach messages to /email, /tweet, etc… to notify robot state transition.

```mermaid
flowchart TB

	subgraph S[Demo Code Running on SMACH]
	START –> State_1
State_1 –> State_2
State_2 –> END

end

	subgraph E[SMACH To Notification]
	
id1[(state list
DESCRIPTION / IMAGE
DESCRIPTION / IMAGE
…)]

id1 –> email[[pub /email jsk_robot_startup::Email]]
id1 –> tweet[[pub /tweet std_msgs::String]]
id1 –> chat[[pub /google_chat_ros/send/goal
google_chat_ros::SendMessageAction]]

end
S –>|”[{‘DESCRIPTION’: string, ‘IMAGE’: base64}]”| E
email –> email_body([“DESCRIPTION[0]
DESCRIPTION[1]
IMAGE[1]
DESCRIPTION[1]
IMAGE[1]
…”])
tweet –> tweet_body1([“DESCRIPTION[0]”])
tweet_body1 –> tweet_body2([“DESCRIPTION[1]
IMAGE[1]”])
tweet_body2 –> tweet_body3([“DESCRIPTION[2]
IMAGE[2]”])
chat –> chat_body1([“DESCRIPTION[0]”])
chat_body1 –> chat_body2([“DESCRIPTION[1]
IMAGE[1]”])
chat_body2 –> chat_body3([“DESCRIPTION[2]
IMAGE[2]”])


```

### Subscribing Topics


	~smach/container_status (smach_msgs/SmachContainerStatus)

Input topic smach status





### Publishing Topics


	/email (jsk_robot_startup/Email)

Email message with description and image



	/tweet (std_msgs/String)

Tweet message with description and image



	/google_chat_ros/send/goal (google_chat_ros/SendMessageActionGoal)

Send google chat message with description and image.





### Parameters


	~sender_address (String)

Sender address



	~receiver_address (String)

Receiver address



	~google_chat_space (String)

Receiver Google Chat space name



	~google_chat_tmp_image_dir (String)

Directory where images are temporarily stored for google_chat_ros





## launch/safe_teleop.launch

This launch file provides a set of nodes for safe teleoperation common to mobile robots. Robot-specific nodes such as /joy, /teleop or /cable_warning must be included in the teleop launch file for each robot, such as [safe_teleop.xml for PR2](https://github.com/jsk-ros-pkg/jsk_robot/blob/master/jsk_pr2_robot/jsk_pr2_startup/jsk_pr2_move_base/safe_teleop.xml) or [safe_teleop.xml for fetch](https://github.com/jsk-ros-pkg/jsk_robot/blob/master/jsk_fetch_robot/jsk_fetch_startup/launch/fetch_teleop.xml).

![JSK teleop_base system](images/jsk_safe_teleop_system.png)

## launch/rfcomm_bind.launch

This script binds rfcomm device to remote bluetooth device. By binding rfcomm device, we can connect bluetooth device via device file (e.g. /dev/rfcomm1). For example, rosserial with [this PR](https://github.com/ros-drivers/rosserial/pull/569) can be used over bluetooth connection.

### Usage

Save the bluetooth device MAC address to file like /var/lib/robot/rfcomm_devices.yaml.

```
- name: device1

address: XX:XX:XX:XX:XX:XX

	name: device2
address: YY:YY:YY:YY:YY:YY


```

Then, bind rfcomm devices.

`
roslaunch jsk_robot_startup rfcomm_bind.launch
`

To check how many devices are bound to rfcomm, use rfcomm command.
`
rfcomm
`

## Tips
### Configuring a smtp server with Gmail
1. Setting postfix

Add following codes to /etc/postfix/main.cf
`
relayhost = smtp.gmail.com:587
smtp_sasl_auth_enable = yes
smtp_sasl_password_maps = hash:/etc/postfix/gmail_passwd
smtp_sasl_security_options = noanonymous
smtp_sasl_mechanism_filter = plain
smtp_use_tls = yes
`
2. Create and register a password file

Create /etc/postfix/gmail_passwd
`
# /etc/postfix/gmail_passwd
smtp.gmail.com:587 <example>@gmail.com:<login password or application password>
`
Register /etc/postfix/gmail_passwd
`bash
$ sudo postmap /etc/postfix/gmail_passwd
`
If you find /etc/postfix/gmail_passwd.db, it works well.

3. Reload postfix
`bash
$ sudo postfix reload
`



            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          jsk_robot
        


        		
          jsk_pr2_robot
        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





